Real-time monitoring of laser welding of galvanized high strength steel in lap joint configuration
نویسندگان
چکیده
Two different cases regarding the zinc coating at the lap joint faying surface are selected for studying the influence of zinc vapor on the keyhole dynamics of the weld pool and the final welding quality. One case has the zinc coating fully removed at the faying surface; while the other case retains the zinc coating on the faying surface. It is found that removal of the zinc coating at the faying surface produces a significantly better weld quality as exemplified by a lack of spatters whereas intense spatters are present when the zinc coating is present at the faying surface. Spectroscopy is used to detect the optical spectra emitted from a laser generated plasma plume during the laser welding of galvanized high strength DP980 steel in a lap-joint configuration. A correlation between the electron temperature and defects within the weld bead is identified by using the Boltzmann plot method. The laser weld pool keyhole dynamic behavior affected by a high-pressure zinc vapor generated at the faying surface of galvanized steel lap-joint is monitored in real-time by a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source. & 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Finite-element thermal analysis of laser welding of galvanized high-strength steel in a zero-gap lap joint configuration and its experimental verification
A three-dimensional (3D) finite element (FE) model is applied to predict the temperature evolution in the laser welding of galvanized high-strength steels in a zero-gap lap joint configuration. A rotary Gaussian volumetric heat source model is introduced to simulate the laser energy input. The temperature data measured by thermocouples are used to verify the boundary conditions of the thermal m...
متن کاملFinite Element Simulation of Nd:YAG laser lap welding of AISI 304 Stainless steel sheets
Laser beam welding (LBW) is one of the most important manufacturing processes used for joining of materials. It is also a remarkably complicated, nonlinear operation involving extremely high temperatures. Since its invention more than two decades ago, laser beam welding has been more of an art than a science. Laser welding of austenitic stainless steel AISI 304 the candidate material of this re...
متن کاملEffect of Laser Spot Welding Variables on Microstructure and Mechanical Properties of the Ti-6AL-4V to AISI304 Dissimilar Joint
In this project, joining Ti-6Al-4V and AISI 304 dissimilar plates by laser-spot-welding method has been studied. In this regard, Ti-6Al-4V and AISI 304 plates, with a thickness of 0.7 and 0.5 respectively, were lap-welded using an interlayer of 0.2 & 0.3 mm copper and silver (pure silver). The process was done by 400Watt pulsed laser (Nd:YAG) using oncentric spot welding with 4mm diameter circl...
متن کاملEffect of Welding Heat Input on the Intermetallic Compound Layer and Mechanical Properties in Arc Welding-brazing Dissimilar Joining of Aluminum Alloy to Galvanized Steel
The effect of weld heat input on the formation of intermetallic compound (IMCs) layer during arc welding–brazing of aluminium and steel dissimilar alloys, was investigated through both finite element method (FEM) numerical simulations and experimental measurements. The results of FEM analysis as well as welding experiments indicated that increasing weld heat input increases the thickness of IMC...
متن کاملThe effect of heat input on the microstructure and hardness of continuous fiber laser welded high Al-content δ-TRIP steel
Recent research suggests that extraordinary combinations of strength and ductility can be achieved in the so-called TRIP steels. With the development of these steels, welding with small weld nugget size and acceptable strength are needed. For these reasons present study was carried out to investigate the effect of heat input onweld size, microstructure and the hardness of the welded metal of 0....
متن کامل